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1. Introduction 

1.1 Purpose of Thesis 

The purpose of this thesis is to investigate the implementation of magnetoresistive memory 

using wafer scale integration. Wafer scale integration involves the integration of very large numbers 

of semiconductor devices on a single semiconductor wafer. The primary concern of the thesis is 

examining the types of defects and their distribution to facilitate the design of redundancy on the 

wafer to allow acceptable yields. 

1J2 Methodology 

The methodology used to arrive at the optimized wafer design parallels the format of the 

thesis. First, current memory technolo^es are examined to establish performance, capacity and yield 

requirements for a new memory product. This work is detailed in Chapter Two. Chapter Two also 

examines how magnetoresistive memory competes with existing memory technolo^es and why wafer 

scale integration is required to allow magnetoresistive memory to succeed. Given the need for wafer 

scale integration. Chapter Three examines the current state of wafer scale integration technology. 

Chapter Three examines current trends and products utilizing wafer scale integration and then 

focuses on wafer scale memory products and their associated problems. These problems consist 

mainly of various types of semiconductor defects and their effect on product yields. With knowledge 

of the types and densities of defects in wafer scale integration, Chapter Four describes the variety of 

methods of compensating for defects. Each of the methods has advantages and disadvantages in 

terms of yield, capacity and testability. Chapter Four examines the interdependendes of yield, 

capacity and testability and proposes feasible memory designs. These memory designs and defect 

probabilities are modelled in Chapter Five using a computer simulation. The computer simulation 



www.manaraa.com

2 

determines whether the redundancy in the memory design can compensate the simulated defect 

density and distribution. The results of the computer simulations are detailed in Chapter Six. The 

results indicate the optimal redundancy for wafer scale magnetoresistive memory. The results are 

utilized in Chapter Six to optimize the design of the wafer scale memory. Rnally, Chapter Seven 

summarizes the feasibility of wafer scale magnetoresistive memory and describes future research. 
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2. MEMORY TECHNOLOGIES 

2.1 Introduction 

Memory systems are a critical component of computer systems. Memory systems in computers 

consist of multiple components with differing size, speed and cost attributes. This chapter examines 

existing memory technologes and discusses the advantages and disadvantages of each. Memory 

hierarchies which combine memory technologies into a memory system are summarized. This 

chapter also examines magnetoresistive memory technology and how it can be used to enhance 

memory system performance. 

22 Existing Memoiy Technologies 

Easting memory technologies can be divided into two categories, electro-mechanical and 

semiconductor. Electro-mechanical memory consisting of winchester disks, optical disks, and tape 

systems is comprised of a mechanical moving media and a read-write subsystem for writing and 

reading data from the media. Semiconductor memory consists of static and dynamic random access 

memory (RAM). Bubble memory will not be considered because it is not widely used and is not an 

emerpng technology. Semiconductor memory consists of electronic devices on a semiconductor 

substrate and has no moving media. Each of these technologies is discussed in detail below and 

summarized according to the following attributes. 

Access time Access time refers to the amount of delay associated with fulfilling a 

random request for data. 

Capacity Capacity is the amount of on-line data which can be stored on a physical 

unit. 
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Transfer rate Transfer rate is the amount of data per second which can be written or 

read from the device on a sustained basis. 

Cost per megabyte Cost per megabyte is a merit which evaluates a technology based on unit 

price and capadty. Cost per megabyte only includes the capacity which can 

be accessed without operator intervention. For stand alone units this is a 

single side of a single piece of media. For autochangers, it is the entire 

amount of media wiiich can be present in the autochanger. 

Removable media cost Removable media cost is the cost per megabyte of removable media for 

technologies with removable media. 

22i Electro-Mechanical Memory 

Electro-mechanical memory consists of a read-write subsystem and some type of media. The 

electro-mechanical memory typically uses either magnetic or magneto-optical properties to store 

data. Electro-mechanical memory is characterized by slow access times, high capacity, moderate 

transfer rates and moderate to low cost per megabyte. 

2.2.1,1 Winchester Disks Winchester disks use magnetic recording technology to record 

information on rigd magnetic media. The recording subsystem consists of rotating magnetic media 

and a read-write head which can traverse the tracks of data which are recorded in concentric circles 

on the media. 

Winchester disk technology continues to advance despite assertions that it is a mature 

technology with little room for improvement. Key areas of advancement are in areal recording 

density and access time. Areal recording density in combination with recording area determines the 

capacity of a platter. Multiple platters are present in high performance high capacity winchester 

Areal density Areal density is the number of bits which can be stored in one square inch. 
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disks. Areal recording density is the product of two factors, recording density per track and track 

density. Recording density per track has improved with the use of thin-film plated media and lower 

flying heights for heads.'*' Improved recording techniques have also contributed to increased 

recording density per track.'^' Track density has been improved through the development of 

dedicated servo surfaces and embedded positioning systems. Dedicated servo surfaces use one of the 

available platters to control the tracking system for all the remaining platters. Embedded positioning 

systems use servo information which is embedded in the recording tracks on all the platters. Access 

time has improved through the use of voice-coil actuators and higher rotational speeds. Voice-coil 

actuators position the read/write head over the proper track and have reduced access time due to 

positioning the head and have also contributed to increased track density. Higher rotational speeds 

have reduced access time by reducing the latency due to disk rotation. Winchester disks are expected 

to advance technologically in the following areas.'^' 

• Thin-film and magnetoresistive heads 

• Disk medium using film barium ferrite or metal particles. 

• Embedded servo for increased tracks per inch 

• Improved signal processing to compensate for decreased signal-to-noise ratio from smaller 

bits. 

• Low mass actuators and air bearings to improve head to track registration. 

Winchester disk attributes for the current year(1990) and projected attributes for 1993 are listed in 

Tables 1 and 2 respectively. 

2.2.1.2 Optical Disks Rewriteable optical disks consist of an optically sensitive surface and 

an optical read-write head. Optical disks currently on the market utilize magneto-optical recording. 

A laser diode writes the data on the surface at a high laser power and reads data using a lower laser 

power. A biasing magnet is used to control the state of the bits heated by the high power laser. A 
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TABLE 1. 1990 Winchester Disk Attributes 

Access Time 12-20 milliseconds 
Capacity 20- 1600 megabytes 
Transfer Rate 2-15 megabits/second 
Cost per Megabyte 4-10 $/megabyte 
Removable Media Cost NVL S/megabvte 
Areal Density 40 X 10e6 bits per square inch 
Source: IEEE Spectrum Feb 1987 

TABLE 2. Projected 1993 Winchester Disk Attributes 

Access Time 10-20 milliseconds 
Capacity 40-6400 megabytes 
Transfer Rate 2-30 megabits/second 
Cost per Megabyte 2-10 (/megabyte 
Removable Media Cost NA. (/megabyte 
Areal Density 80xl0e6 bits per square inch 
Source: IEEE Spectrum Feb 1987 

combination of factors including the mass of the biasing magnet and the time required for the bits to 

cool to below the Curie temperature necessitate a two pass write operation. The first pass is used to 

set all bits to a known state while the second pass is used to write bits which should be in the 

opposite state. 

Rewriteable optical disks are a recent entry in the mass storage market. Optical disks are 

expected to compete with winchester disks in the future but currently are slower due to larger mass 

heads and multiple pass write operations. Due to the size and expense of the optical head, optical 

drives only write on one side of the media. Using the other side of the media requires that the 

media be removed and flipped by a mechanical system or a human operator. Because of this fact, 

capacity is quoted as the single side capadty and cost per megabyte is calculated based on the single 

side capacity. Multiple pass write operations decrease the transfer rate for write operations and as a 

result two transfer rates are quoted. The first rate refers to the read transfer rate while the value in 

parentheses is the write transfer rate. 
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Optical disks have the advantage of removable me^a and high areal density. The removable 

media allows a single optical mechanism to record data on a number of surfaces and allows for the 

removal and archiving of data. Higher areal density should allow more data in smaller packages as 

optical heads are reduced in wze and mass. Optical disk research is expected to advance in the 

following areas.1^) 

• Shorter wavelength and higher power laser diodes. 

• Direct-overwrite media which allows one pass write operations. 

• Improved signal processing to compensate for decreased signal-to-noise ratio from smaller bits. 

• Low mass actuators and air bearings to improve head to track registration. 

• Integrated low mass optical heads. 

The current(1990) attributes and projected 1993 attributes are listed in Tables 3 and 4 respectively. 

TABLE 3. 1990 Optical Disk Attributes 

Access Hme 40-100 milliseconds 
Capacity 160-512 megabytes (per side) 
Transfer Rate 2.4 - 6.6(12 - 33) megabits/second 
Cost per Megabyte 12-24 (/megabyte 
Removable Media Cost 038 (/megabyte 
Areal Density 350xl0e6 bits per square inch 
Source: Rothchild Consultants - The Optical Memory Report Dec. 1989 

TABLE 4. Projected 1993 Optical Disk Attributes 

Access Time 15-100 milliseconds 
Capacity 256 - 2000 megabytes 
Transfer Rate 24-24 megabits/second 
Cost per Megabyte 3-12 S/megabyte 
Removable Media Cost 0.10 - 038 S/megabyte 
Areal Density 1.4 X 10e9 bits per square inch 
Source: Rothchild Consultants - The Optical Memory Report Dec. 1989 
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2.Z1.3 Reel-to-Reel Tapes Reel-to-Reel tape has existed in the computer industry for many 

years and is still the current archive for most data processing operations. Large libraries of archived 

data on half inch tape perpetuate the use of the technology which has changed very little since its 

introduction. 

Half inch reel-to-reel tape uses a nine track read-write head to record data in parallel tracks as 

the tape media is moved over the stationary head. Eight of the tracks contain data while the ninth 

track contains parity. The data are recorded in either 800,1600 or 6250 bits per inch density. Major 

drawbacks of tape media are the rewind time encountered at the end of media and reposition cycles 

or wasted media if data are not ready when the drive is correctly positioned and moving down the 

tape. 

Data compression has recently increased capacity by a factor of about three and is expected to 

become widely used. Other areas of technological advancement are increased recording densities and 

higher linear tape speed. Recording density is projected to double to 12500 bits per inch and later 

double again to 25000 bits per inch. Technological advancement areas are listed below. 

• Data compression. 

• Increased recording density. 

• Higher linear tape speed. 

The current(1990) attributes and projected 1993 attributes are listed in Tables 5 and 6 respectively. 

2.2.1.4 Half-Inch Cartridge Lonptudinal Tapes Half-inch cartridge lon^tudinal tape is a 

rel a t i v e l y  n e w  t a p e  t e c h n o l o g y  b a s e d  o n  I B M ' s  3 4 8 0  t a p e  c a r t r i d g e .  T h e  c a r t r i d g e  m e a s u r e s  1 x 4 x 5  

inches and is between 450 and 600 feet in length. The tape is pulled out of the cartridge and wound 

on a take-up reel during writing or reading. The tape is rewound back into the cartridge to be 

unloaded. 
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TABLE 5. 1990 Reel-to-Reel Tape Attributes 

Access Time 45-120 seconds 
Capadtv 40 - 500 megabytes 
Transfer Rate 0.8 - 10.0 megabits/second 
Cost per Megabyte 40-80 $/me«abyte 
Removable Media Cost 0.10 - 0.20 (/megabyte 
Area! Density 100xl0e3 bits per square inch 
Source: Freeman Reports Computer Tape Outlook 1989 

Half-Inch Reel and Cartridge Products 

TABLE 6. Projected 1993 Reel-to-Reel Tape Attributes 

Access Time 45-120 seconds 
Capacity 40 - 700 megabytes 
Transfer Rate 0.8 • 18.0 megabits/second 
Cost per Megabyte 30-80 (/megabyte 
Removable Media Cost 0.10 - 0.20 (/megabyte 
Areal Density 200xl0e3 bits per square inch 
Source: Freeman Reports Computer Tape Outlook 1989 

Half-Inch Reel and Cartridge Products 

The data are recorded in parallel longitudinal tracks on the tape. The tape contains between 

18 and 48 tracks which are recorded in a single pass for high performance drives and are recorded in 

multiple passes for lower performance drives. Areas of technologcal advancement are listed below. 

• Data compression. 

• Track density 

• Higher linear tape speed. 

Current(1990) attributes and projected 1993 attributes for half-inch cartridge lon^tudinal tape are 

listed in Tables 7 and 8. 

227.5 Quarter-Inch Cartridge Longitudinal Tapes Quarter inch cartridge longitudinal tape 

is typically used on lower-end systems and does not have the performance of half-inch tape. The 

technology records data in parallel longitudinal tracks on tape contained in a cartridge. The tape 
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TABLE 7. 1990 Half-Inch Cartridge Lonptndinal Tape Attributes 

Access Hme 20-50 seconds 
Capadtv 95-1280 megabytes 
Transfer Rate 0.4 - 24.0 megabits/second 
Cost per Megabyte 4-20 S/meRabyte 
Removable Media Cost 0.10 -0.20 (/megabyte 
Areal Density 2x 10e6 bits per square inch 
Source: Freeman Reports Computer Tape Outlook 1989 

Half-Inch Reel and Cartridge Products 

TABLE 8. Projected 1993 Half-Inch Cartridge Lonptudinal Tape Attributes 

Access Time 20-50 seconds 
Capacity 40- 1280 megabytes 
Transfer Rate 0.4 - 24,0 megabits/second 
Cost per Megabyte 3-20 S/megabyte 
Removable Media Cost 0.08 - 0.16 (/megabyte 
Areal Density 5 X 10e6 bits per square inch 
Source: Freeman Reports Computer Tape Outlook 1989 

Half-Inch Reel and Cartridge Products 

may contain between 9 and 80 tracks which are recorded during multiple passes. Higher 

performance drives contain heads which write four tracks in parallel while lower performance drives 

write one track at a time. Areas of technical advancement for quarter-inch tape are listed below. 

• Data compression. 

• Increased coerdwty for higher recording and track densities. 

• Increased length cartridges. 

• Higher linear tape speed. 

Current(1990) attributes and projected 1993 attributes for quarter-inch cartridge longitudinal tape 

are listed in Tables 9 and 10. 

ZZI.6 Helical Scan Tapes Helical scan technology records data in parallel tracks which are 

recorded diagonally across the tape. Helical scan technology typically uses 4 mm or 8 mm tape 
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TABLE 9. 1990 Cartridge Longitudinal Tape Attributes 

Access Time 10-45 seconds 
Capacity 10-525 megabytes 
Transfer Rate 0.032 - 1.0 megabits/second 
Cost per Megabyte 4-12 (/megabyte 
Removable Media Cost 0.10 -1.00 (/megabyte 
Areal Density 1.4 X 10e6 bits per square inch 
Source: Freeman Reports Computer Tape Outlook 1989 

Data Cassette and Data Cartridge Products 

TABLE 10. Projected 1993 Cartridge Longitudinal Tape Attributes 

Access Time 10-45 seconds 
Capadty 10-1250 megabytes 
Transfer Rate 0.032 - 1.8 megabits/second 
Cost per Megabyte 2-10 (/megabyte 
Removable Media Cost 0.05 - 1.00 (/megabyte 
Areal Density 3.0 X 10e6 bits per square inch 
Source: Freeman Reports Computer Tape Outlook 1989 

Data Cassette and Data Cartridge Products 

although a few systems use 1/4" and 1/2" tape. Helical scan technology is very similar to television 

video tape technology. Several systems including Honeywell's VLDS helical scan tape recorder 

utilize T120 VHS tapes. Units using T120 VHS tapes can store between 25 and 5.2 Gbytes. 8 mm 

units from Exabyte store 23 Gbytes on an 8 mm video cassette. 4 mm products utilize Digital Audio 

Tape (DAT) technology and store between 700 Mbytes and 13 Gbytes on a cassette. 

Helical scan technologies use magnetic heads mounted on a rotating drum to record data at an 

angle across the tape. The drum rotates at 1800 to 3600 rpm while the tape moves by at a slow 

speed. This results in a very high track density of 800 to 2000 tracks per inch. Combined with a 

recording density between 15,000 and 60,000 bits per inch this track density corresponds to an areal 

density of 100 million bits per square inch. Helical scan technology is expected to advance in the 

following areas. 
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• Data compression. 

• Track density. 

• Longer tape. 

• Recording density. 

Current(1990) attributes and projected 1993 attributes for helical scan tape are listed in Tables 11 

and 12. 

TABLE 11. 1990 Helical Scan Tape Attributes 

Access Time 20 seconds 
Capacity 700 - 5200 megabytes 
Transfer Rate 0.96 -1.5 megabits/second 
Cost per Megabyte 2 - 4  $/megabvte 
Removable Media Cost 0.004 - 0.014 $/meeabyte 
Areal Density 100xl0e6 bits per square inch 
Source: IEEE Spectrum October 1989. 

TABLE 12. Projected 1993 Helical Scan Tape Attributes 

Access Time 20-25 seconds 
Capacity 700 -10,000 megabytes 
Transfer Rate 2.5-5.0 megabits/second 
Cost per Megabyte 1 - 4  S/megabyte 
Removable Media Cost 0.004 - 0.014 $/meeabvte 
Areal Density 250xl0e6 bits per square inch 
Source: IEEE Spectrum October 1989. 

22.7.7 Optical Tape Optical tape technology utilizes a dye polymer on a polyester-based 

material to achieve high capacity write-once storage. The data are recorded on a 35 mm wide tape. 

Creo Electronics Corporation has an optical tape drive which stores one Terabyte. The drive 

records 28,500 bits per inch and has a track density of 15,875 tracks per inch. The unit costs 

$225,000 which is $0,225 per megabyte. The removable media cost is $10,000 for one terabyte which 

is $0.01 per megabyte. Optical tape technology is expected to advance in the following areas. 
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• Data compression. 

• Rewriteable media. 

• Lower capacities at lower price. 

Current(19%) attributes and projected 1993 attributes for optical tape are listed in Tables 13 and 14. 

TABLE 13. 1990 Optical Tape Attributes 

Access Time 28 seconds 
Capacity 1.000.000 megabytes 
Transfer Rate 24 megabits/second 
Cost per Megabyte 0.225 S/megabyte 
Removable Media Cost 0.01 (/megabyte 
Area! Density 4S0xl0e6 bits per square inch 
Source: Freeman Reports: Optical Data Storage Outlook 

TABLE 14. Projected 1993 Optical Tape Attributes 

Access Hme 28 seconds 
Capacity 8.000 - 2.500.000 megabytes 
Transfer Rate 2-60 megabits/second 
Cost per Megabyte 0.09 - 0.60 (/megabyte 
Removable Media Cost 0.0025 - 0.005 (/megabyte 
Areal Density 1130xl0e6 bits per square inch 
Source: Freeman Reports: Optical Data Storage Outlook 

ZZ 1.8 Autochanger Systems Autochanger systems utilize a robotic autochanger, removable 

media and multiple drive mechanisms to provide extremely large amounts of on-line storage. 

Autochanger systems utilize optical or cartridge tape. The large access time is due to delays while 

the mechanical robotic system retrieves the required media from a storage slot. 

Optical autochangers utilize 14", 12", 8" or 525" media. Cartridge accesses involve removing 

the current media from the drive, storing the media, retrieving the new media and loading it into the 

drive. The cartridge access takes between ten and fifteen seconds on an optical drive. Tape 

autochangers utilize cartridge tapes. 8 mm and 4 mm tapes are used for large capacity systems 
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while 3480 type cartridges are used for high performance systems. Technolopcal advancement areas 

for autochangers are listed below. 

e Higher speed and more reliable robotic assemblies. 

• Technological advancements in appropriate mecUa. 

Current(1990) attributes and projected 1993 attributes for optical tape are listed in Tables 15 and 16. 

TABLE 15. 1990 Autochanger System Attributes 

Access Time 10-90 seconds 
Capacity 1000 - 552,000 megabytes 
Transfer Rate media dependent megabits/second 
Cost per Megabyte 0.08 - 2.00 $/mcRabyte 
Removable Media Cost media dependent (/megabyte 
Areal Density media dependent bits per square inch 

TABLE 16. Projected 1993 Autochanger System Attributes 

Access Time 10-90 seconds 
Capadtv 1000 - 1300.000 megabytes 
Transfer Rate media dependent megabits/second 
Cost per Megabyte 0.04 -1.00 (/megabyte 
Removable Media Cost media dependent S/megabyte 
Areal Density media dependent bits per square inch 

222 Semiconductor Memory 

Semiconductor memory consists of electronic devices on a semiconductor substrate. 

Semiconductor memory can utilize any of several semiconductor technologies although 

Complementary Metal Oxide Semiconductor (CMOS) is the dominant technology today. Bipolar 

CMOS (BiCMOS) and Emitter Coupled Logic technolopes are expected to be the dominant 

technologies in the 1990's due to increased speed requirements.'^' 
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Semiconductor memory has diverged into three broad categories. These categories are static 

random access memory (SRAM), dynamic random access memory (DRAM) and bubble memory. 

Static RAM is the fastest of the semiconductor memories while bubble memory is the slowest. 

Bubble memory is non-volatile which means it retains its contents when power is removed. SRAM 

and DRAM lose their contents if power is removed. 

Semiconductor memory is characterized by fast access times, moderate capacity, high transfer 

rates and high cost per megabyte. Access time refers to the amount of delay assodated with 

fulfilling a random request for data. Capacity is the amount of data which can be stored on a 

physical unit. Transfer rate is the amount of data per second which can be written or read from the 

device on a sustained basis. Cost per megabyte is a merit which evaluates a technology based on 

unit price and capacity. The 1993 estimated cost per megabyte is based on semiconductor trends 

which indicate that chip capacities quadruple every three years with chip size increasing by a factor 

of 12. Lower yields which result from increased chip size and increasingly complex production 

prevent cost from dropping proportional to density gains. Each of these characteristics is discussed 

below for the existing semiconductor technologies. 

2.2JL1 Static RAM Static RAM is the fastest semiconductor memory. The density and 

capacity of static RAM is lower than dynamic RAM because static RAM requires four to six 

transistors per memory cell compared to dynamic RAM which requires one. The static RAM is 

faster because refresh operations are not required. Static RAM is used in computer systems near 

the high speed CPU's. Advances in CPU cycle time have required static RAM to become 

increasingly faster. Static RAM using BiCMOS technology can operate in the sub 10 nanosecond 

range. 

Capacity is quoted for banks or other combinations of integrated circuits which create byte 

wide memory. Higher capacities can be obtained with multiple banks on a board. Cost per 

megabyte is based on quoted original equipment manufacturer (OEM) prices for the ICs multiplied 
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by a factor of three to compensate for board cost, production cost, distribution, profit and other 

factors. Technical advancement areas for static RAM are listed below. 

• BiCMOS process. 

• GaAs technolo^cal advancements. 

• Integrated circuit yield improvements. 

Tables 17 and 18 contain current and projected 1993 static RAM attributes. Projected attributes are 

based on long term semiconductor trends. 

TABLE 17. 1990 Static RAM Attributes 

Access Time 33-200 nanoseconds 
Capadty 0.03 -1.0 megabytes 
Transfer Rate 40 - 2250 megabits/second 
Cost per Meeabvte 760- 12,200 $/megabyte 
Removable Media Cost NA. $/megabyte 
Areal Density lOxlOeô bits per square mch 
Source: EDN Feb. 15,1990 

TABLE 18. Projected 1993 Static RAM Attributes 

Access Time 1-200 nanoseconds 
Capadty 0.03-4 megabytes 
Transfer Rate 40 - 8000 megabits/second 
Cost per Megabyte 250 - 4000 $/megabvte 
Removable Media Cost NA. (/megabyte 
Areal Density 33xl0e6 bits per square inch 

2222 Dynamic RAM Dynamic RAM can achieve higher densities than static RAM 

because it only requires one transistor per memory cell. The value of a bit is stored as a charge on a 

capacitor which is accessed through the transistor. The charge on the capadtor leaks off with time. 

This requires that dynamic RAM memory cells be read and refreshed at periodic intervals. 

Capadty is quoted for banks or other combinations of integrated circuits which create byte 
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wide memory. Higher capacities can be obtained with multiple banks on a board. Cost per megabyte 

is based on quoted end user prices from BYTE magazine January 1990 for low end prices. High end 

prices are based on manufacturer list prices for minicomputer systems. Dynamic RAM is expected 

to advance in the following technological areas. 

• Lithography improvements. 

• Reduced capacitor size. 

• Integrated circuit yield improvements. 

• Built-in or simplified refresh. 

Tables 19 and 20 contain current and projected 1993 dynamic RAM attributes. Projected attributes 

are based on long term semiconductor trends. 

TABLE 19. 1990 Dynamic RAM Attributes 

Access Time 65 - 200 nanoseconds 
Capacity 025 - 1.0 megabytes 
Transfer Rate 40-120 megabits/second 
Cost per Megabyte 120 - 500 (/megabyte 
Removable Media Cost NA. (/megabyte 
Areal Density 50 X 10e6 bits per square inch 

TABLE 20. Projected 1993 Dynamic RAM Attributes 

Access Time 50 - 200 nanoseconds 
Capacity 0,25 - 16.0 megabytes 
Transfer Rate 40-160 megabits/second 
Cost per Megabyte 40-170 (/megabyte 
Removable Media Cost NA. (/megabyte 
Areal Density 170 X 10e6 bits per square inch 
Source: Electrical Engineering Times Issue 594 
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2 J Memory Hierarchy 

Computer systems use several memory technologies to form a complete memory system. A 

memory system which consists of at least two memories of differing speed and size is called a 

memory hierarchy.^ A memory hierarchy which has properly selected components can provide the 

storage capadty of the largest (and typically slowest) technology at a speed only slightly slower than 

the fastest most expensive memory technology. 

The attributes of existing technologies are summarized in Table 21 for online capacities. This 

means that the cost per megabyte is calculated based on online capacity. 

TABLE 21. Online Memory Attributes 

Technology Cost ($/MByte) Access Time Unit Capacity(Megabytes) 
Static RAM 760-12^ 3.5 - 200 nsec 0.03 - 1.0 
Dynamic RAM 120 - 500 65 • 200 nsec 025 - 4.0 
Bubble Memory 1000 10 msec 1 
Winchester Disk 4-10 12 -20 msec 20- 1600 
Optical Disk 12-24 40 - 100 msec 256 - 450 
Helical Scan Tape 2 - 4  20 - 60 sec 700 - 5200 
Half-inch Cartridge Tape 4-20 20 - 50 sec 95- 1280 
Quarter-inch Cartridge Tape 4-12 10 - 45 sec 10-525 
Reel-to-Reel Tape 40-80 60 sec 40 - 500 
Autochanger (optical) 0.5 - 2.0 10 -15 sec 1000 - 250,000 
Autochanger (tape) 0.08 -1.00 20 • 50 sec 1000 - 552,000 
Optical Tape 0.225 28 sec 1,000,000 

The access time and cost of the various memory technologies are shown in Figure 1. The 

region between the dashed lines in Rgure 1 is known as a gap. The gap is a region where no cost 

effective memory technology exists which could allow memory hierarchies to perform more 

effectively. Magnetoresistive memory is targeted as a gap technology. The following comparison 

details how magnetoresistive memory would improve memory system performance for an equivalent 

cost. 
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2.3.1 Performance Impact of Magnetoresistive Memory 

This section will examine the performance gains which can be achieved by using 

magnetoresistive memory as a gap technology. The cost and performance attributes of the three 

technologies used are from Granley and Daughton'^' and are shown in Table 22. 

TABLE. 22. Projected Cost/Performance For DRAM, MRAM, and Hard Disk Mass Memories 

DRAM MRAM Hard Disk 
Approximate Cost ($/MB) 100 10 1 
Access Time (usee) 0.1 10 10,000 

The performance impact of the magnetoresistive memory is evaluated using disk cache 

measurements from Smith.^ Smith performed trace measurements on three commercial systems and 

evaluated the impact of disk caching. The measurements and simulated disk caching indicated the 

following miss ratios. 

TABLE 23. Miss Ratios for Three Commercial Systems 

System On-line Miss Ratio for Miss Ratio for Miss Ratio for Miss Ratio for 
Name Disk Space SOOMB Cache SOMB Cache 2S0MB Cache 2SMB Cache 

Crodcer Bank 11.8 GB 0.09 0.14 — — 

Hughes Aircraft 9.9 GB 0.02 0.06 — — 

Stanford LA Center 2.5 GB - - 0.015 0.060 

Using a simple model for evaluating effective access times, the performance impact of disk 

caches located in RAM and MRAM can be evaluated. Assuming the same amount of money is 

being expended to improve the system, the amount of MRAM which could be added is ten times 

greater than the DRAM. For the first two systems, the comparison is between 500MB of MRAM 

and 50 MB of DRAM. For the third system, the comparison is between 250 MB of MRAM and 25 

MB of DRAM. 
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The equation used to evaluate the effective access time is 

Teff = (\-MR)'Tcache + MR-Tdisk'0-+ WR) (2.1) 

where MR = Miss Ratio 
and WR = Write Ratio ( assumed to be 0.3 ) 

The results of equation 2.1 are shown in Table 24. The memory systems using MRAM 

performed between 1.5 times and 3.8 times faster than the systems using DRAM disk caches costing 

equivalent amounts of money. These Figures show that MRAM can be used to cost effectively 

improve memory system performance. For Crocker Bank the performance is 1.5 times faster, while 

performance for Hughes Aircraft and the Stanford Linear Accelerator Center are 2.9 and 3.8 times 

faster respectively. 

TABLE 24. Disk Cache Performance for Three Commercial Systems 

System 
Name 

Effective Access 
Time with MRAM 

Effective Access 
Time with DRAM 

Performance Gain using 
MRAM instead of DRAM 

Crodcer Bank 1179.1 usee 1820.1 usee 154 
Hughes Aircraft 269.8 usee 780.1 usee 2.89 

Stanford LA Center 204.9 usee 780.1 usee 3.81 

2.4 Magnetoresistive Memoiy 

14.1 Introduction 

Magnetoresistive memory uses a physical phenomena known as magnetoresistance to store 

data. A magnetoresistive memory element can be magnetized into one of two possible states. This 

section discusses magnetoresistance and magnetoresistive memory elements. Magnetoresistance will 

be discussed first, followed by a detailed description of how magnetoresistive memory elements can 

be used to store digital data. 
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Magnetoresistance is based on the magnetoresistive effect. The magnetorcsistive effect is the 

change in the resistance R of a substance when it is subjected to an external magnetic field.'^' The 

resistance R changes as the angle between the current and the direction of magnetization changes. 

The magnetoresistive material used for the memory cells is a magnetoresistive double layer of 

ternary alloy. It consists of two magnetic layers separated by a thin non-magnetic conducting layer 

as shown in Rgure 2. The magnetic layers are composed of Nio.65Feo.l5Coo^ and are 100 to 150 

Angstroms thick. The conducting layer is tantalum and is 40 to 50 Angstroms thick. The cell 

exhibits a 2.5% resistance change when subjected to appropriate strong fields. 

T" 
100 A 

JL-
40A 

T 
100 A 

JL 

Current expiremental elements are as small as 1.5 um x 3.0 um; with advanced lithography 

smaller elements can be achieved. Very dense proposed memory cells or elements are shown in 

Figure 3. The line consisting of the elements is called the sense line. Multiple elements can be on a 

sense line with shorting metal between them to provide magnetic isolation. The memory elements 

are 0.6 um wide and 0.6 um long mth the easy axis perpendicular to the sense line. The elements 

are referred to in other literature as transverse elements. The internal magnetization of the element 

can lie in either direction of the easy axis. In the actual elements the magnetizations of the layers 

are in opposite directions which allows for flux closure in the indiwdual element. This is also the 

configuration the element assumes when a strong current flows through the sense line. The word 

line is a conducting metal and is used to bias the element for reading or writing. 

^^0.65^® 0.15 ̂ °0.20 

Tantalum 

^^0.65^® 0.15 ̂ °0  ̂

Figure 2. Magnetoresistive double layer 
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Figure 3. Magnetoresistive memory element 

The sense line and word line function to select a single cell in a manner analogous to row and 

column select in standard random access memory(RAM). The memory cell is written and read in 

the following manner. The sense line current direction determines whether a "1" or a "0" is being 

written. The sense current is not set high enough to switch the cell since it is driving multiple cells 

along the sense line. The proper word line is enabled to prowde the required additional Field. 
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Hgure 4 shows the Stoner-Wolhfarth threshold for a typical 1.5x5 um cell. When the sense and 

word currents are below the threshold, the cell is stable in it's current configuration. If the sense 

and word currents exceed the threshold, the cell will switch into a new state which is determined by 

the direction of the current in the sense line. 

4.0--

Sense 
Current 
(mA) 

3.0--

2,0 • -

5 10 15 20 

Word Current (mA) 

Figure 4. Stoner-Wolhfarth threshold for a 1.5x5 um element 

For reading the cell, a moderate sense current is established in a predetermined direction. If 

the direction of the field from the sense current is the same as the magnetization of the magnetic 

layers, then the line will be in a low resistance state and the resistance of the sense line will only 

change slightly as the word field is applied. If they are in opposite directions then the resistance of 

the line and the output voltage across it will be higher when the word field is applied as shown in 

Figure 5. Due to the small output voltage, the cell is sampled multiple times and the signal is 

summed. This improves the signal to noise ratio since the signal is proportional to the number of 

samples while the noise is proportional to the square root of the number of samples. A 13x5 um 

cell can be sampled at a 10 MHz rate for 1.25 microseconds to yield a signal to noise ratio of 15 and 

a bit error rate of or better.''' An advanced read mode, utilizing a reverse word current, 

quadruples the signal output. The mode significantly enhances the speed and error rate of the 
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Figure 5. Output curves for a magnetoresistive element 

device. 

Z4.2 Wafer Scale Application 

Magnetoresistive memory appears to be a good candidate for Wafer Scale Integration. The 

technology is compatible mth standard VLSI processing and functional 8K bit ICs have been 

fabricated by Honeywell. Past wafer scale memory projects have typically failed because they had 

densities comparable to standard memory or had inefTident redundancy.'*"' Magnetoresistive memory 

handles both problems. Magnetoresistive memory can achieve densities many times greater than 

standard semiconductor memory because of small bit sizes due to transistor sharing. Semiconductor 

memory requires at least one transistor per cell which consumes available wafer area. 

Magnetoresistive memory shares transistors by stringng multiple cells on a sense line. Pohm et al. 
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recently presented details on theoretical studies for bit densities of lO^bits/cm^ with advanced 

lithography.''^! Magnetoresistive memory can potentially operate with much lower redundancy than 

current semiconductor memory due to the fact it is insensitive to alpha-particle induced soft errors. 

Magnetoresistive wafer scale memory is an ideal candidate for the gap between conventional 

semiconductor memory and magnetic or magneto-optical recording. Recording technologies have 

access times in the 12-100 millisecond range while semiconductor memory typically operates in the 

25-100 nanosecond range. This presents a 10^ speed difference which is difficult for memory 

hierarchies to bridge effectively. Magnetoresistive wafer scale memoiy is targeted to operate in the 

1-10 microsecond range and will significantly enhance current memory technology. 



www.manaraa.com

27 

3. WAFER SCALE INTEGRATION 

3.1 Introduction 

Wafer Scale Integration is a key technology for development of magnetoresistive memory as a 

cost-effective gap technology. Wafer scale integration is the integration of millions of IC circuit 

components on a single wafer. The wafer is not cut into die as is done with traditional VLSI. 

Instead the wafer is utilized in its uncut form in the final packaging. This chapter examines wafer 

scale integration technology and describes the critical areas to be addressed in designing a wafer 

scale integration memory. 

32 Histoiy of Wafer Scale Integration 

Wafer scale integration has been attempted on a number of products dating back to a Texas 

Instrument design in 1966.''"' Table 25 provides a summary of these products. The primary problem 

associated with the earliest WSI attempts was a lack of redundancy at the end of fabrication while 

later designs suffer because of low density due to inefficient redundancy methods. The technologies 

used to utilize redundancy are described in the next section. 

3J Wafer Scale Integration Technologies 

WSI has attempted to use a range of integration technologies. The first products attempted to 

use discretionary wiring or pad relocation. These techniques utilize a custom metallization layer to 

interconnect functional cells. This requires a wafer probing before fabrication is complete to 

determine which cells are functional. The custom mask is then created to connect the functional 
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TABLE 25. Previous WSI Projects 

Name Originator Description 
Discretionaiy Wiring 
Pad Relocation Full Wafer LSI 
Wafer Scale Computer 
Wafer Scale Hybrid 
Adoptive WSI 
Reconstiuctable VLSI 
Wafer Scale RAM 
Full Wafer MOS RAM 
Cellular VLSI 
VHSIC-2 Superchip 
WASP 
Memory by Configuration Lode 

Texas Instruments (1966) 
Hughes (1969) 
Trilogy (1983) 
Mosaic Systems (198S) 
McDonnell Douglas (1979) 
MIT/Lincoln Lab (1983) 
NTT (1984) 
NTT (1980) 
Hughes (1983) 
TRW (future) 
UK 5G Computer Program (future) 
Sinclair Research (1985) 

Discretionary wiring of SSI gates. 
Custom mask to connect SSI/MSI cells. 
WSI attempt for 30 MIPs IBM compatible mainframe. 
CMOS ICs bonded onto aluminum interconnect grid. 
Operating cells were addressed by non-volatile decoder. 
Orthogonal Array with laser-programmable links. 
2S6K X 6 RAM using redundancy. 
1 Mbit MOS RAM using redundancy. 
3D wafer stack. 
9 square inch chips with over 1 million gates. 
Wafer Scale Associative String Processor. 
1/2 M byte memory using logic to isolate defects. 

Source: Carlson and Neueerbauer. 
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cells together. These methods suffer from expensive custom mask generation and the lack of 

redundancy to compensate for defects which occur in the manufacturing cycle after the wafer 

probing. These problems were eliminated with the use of more sophisticated redundancy techniques. 

These techniques, which are the key approaches used today, are described below. 

Programmable Reconfiguration: Programmable reconfiguration utilizes on-chip electronically 

controlled interconnections to allow selection of fimctional cells after wafer processing has been 

completed. The original implementation by Manning allowed cells to communicate with nearest 

neighbors. Subsequently, Aubusson examined more sophisticated arrays which allowed five 

neighbors instead of three and increased wafer j^elds. More generalized stratèges have since been 

presented which utilize interconnecting bus structures running along the sides of the cells. The bus 

design allows a variety of mappings including linear arrays, trees, grids and pyramids.''^' 

Redundancy Optimization: Redundancy optimization is concerned with manmiâng wafer yield 

through efficient redundancy design. Redundancy can occur at several levels in the wafer scale 

design. However, excess redundancy at any level decreases usable wafer area and may cause the 

design to become economically unattractive. 

Laser Restructuring: Laser Restructuring was developed in 1983 by MIT/Lincoln Laboratories, 

l^er restructuring involves using a laser to link functional cells into the interconnection system. All 

the cells are ori^ally isolated so they can be tested individually. Then a computer program 

determines the optimal routing scheme and uses the laser to properly interconnect the cells. 

3.4 Current Wafer Scale Integration Products and Projects 

WSI has resulted in some current products and many possible products are being investigated. 

The products which wll be discussed in this section are products which are used for computer 

memory. The Anamartic Wafer Stack and the Inova 1-Mbit SRAM are released products. The 
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Inova 8-Mbit SRAM is currently under development. 

3.4.1 Anamartic Wetfer Stack 

The Anamartic Wafer Stack is a solid-state memory targeted at the gap between 

semiconductor memory and disk drives. The Wafer Stack utilizes dynamic RAM technology on six 

inch wafers. The Wafer Stack uses two six inch wafers to form a 40 MByte module. Each wafer 

contains 202 one-megabit die. The one-megabit DRAMs utilize a 13 um n-well CMOS process and 

measure 13.65 x 4.4 mm. The DRAM cells are 20 percent larger than traditional DRAM because 

they are designed with spare cells for redundancy. Each DRAM die also contains configuration logic 

which allows it to connect with any of its four neighbors. An external controller tests all the die and 

then programs the configuration logic for each die to form a single bi-directional path through the 

good die.'"' The Wafer Stack has an access time of 200 microseconds and a 20 megabit per second 

transfer rate. A 40 MByte module costs $11,680 and a 160 MByte four module system costs $28,760. 

3.4.2 Inova 1 Mbit SRAM 

The Inova 1-Mbit SRAM is not a true wafer scale product. It is an intermediate product 

which was developed to facilitate the WSI program at Inova. The wafer actually contains thirty of 

the 1-Mbit SRAM parts, each of which measures 9.1 x 34.1 mm. This is about six times the size of 

1-Mbit dynamic RAM parts which are currently in production. An important attribute of the 1-Mbit 

SRAM is the redundamcy used in the part. The part actually contains 40 blocks. 32 functional 

blocks are selected and the remaining blocks are isolated by blowing poly fuses. Rnally, a non-

discretionary metal layer is laid to interconnect the blocks. This final metal layer utilizes a relaxed 

20 micron pitch to minimize possible yield loss due to the step. 
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3.4.3 Inova 8-Mbit SRAM 

The Inova 8-Mbit SRAM is a continuation of the 1-Mbit program. The 8-Mbit part is 

comprised of eight adjacent 1-Mbit parts. The resulting part requires 35.6 x 76.2 mm. The 8-Mbit 

part is mounted on a composite substrate from Westinghouse to facilitate heat removal. 

3.5 Wafer Scale Integration Technologies For Memoiy 

Utilizing WSI for memory products involves the identification of properties which are unique 

to memory products and tuning the wafer scale design to complement memory attributes while 

minimiring cost. In memory products it is important to minimize access time and maximize transfer 

rate for a given capacity. Access time is determined by the memory technology and the memory 

architecture. Transfer rate is determined by cycle time and memory architecture. Capacity is 

determined by the wafer area, memory element size and redundancy. Redundancy can occur at a 

number of levels in the wafer design and it is important to not implement excess redundancy because 

capacity will be reduced. The following wafer scale design technologies will be the focus of the 

remainder of this thesis. 

Block Architecture Determines memory speed and transfer rate. 

Programmable Reconfiguration Determines levels of sparing and blocking. 

Redundancy Optimization Determines the yield, cost and capacity of the wafer scale 

memory. 

The design methodology will consist of 
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1. Designing the block architecture to meet performance goals 

2. Modification of architecture to allow self-test and reconfiguration capabilities. 

3. Optimizing Redundancy to maximize wafer yields for the pven architecture. 

Design requirements are determined from Chapter 2 where competing and complementary 

technologies were evaluated. The requirements are based on 1993 predicted attributes since 

magnetoresistive memory must be competitive at the time of its release. The requirements are 

summarized in Table 26. 

TABLE 26. Design Requirements for Wafer Scale Magnetoresistive Memory 

Attribute Semiconductor 
Memory Range 

Winchester Disk 
Range 

Wafer Scale MR 
Requirement 

Access Time (seconds) le-9 - 200C-9 lOe-3 - 90e-3 lOe-6 
Transfer Rate (Mb/sec) 40e6 - 8000e6 2e6-15e6 40e6-100e6 

Cost per Megabyte ($/MB) 40 - 4000 2-10 4-20 
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4. WAFER SCALE DESIGN 

The focus of Chapter 4 is examining the range of trade offs which exist in wafer scale 

integration(WSI) memory. These trade-offs primarily involve capacity and yield, but other factors 

such as testability, reconfigurability, power requirements and performance must also be examined. 

4.1 Yield versus Capacity Trade^ofT 

Yield on a WSI memory is determined by the number of defects, the distribution of the defects 

and the redundancy (fault-tolerance) of the architecture. The redundancy on the wafer impacts the 

capadty of the memory. This is because any area used for redundancy decreases the amount of area 

available for actual capacity. Therefore, the amounts and locations of redundancy on a WSI memory 

are critical in determining the capacity and yield. The emphasis of the remaining chapters of this 

thesis pertains to modelling redundancy variations to optimize the WSI memory architecture. The 

architecture and redundancy of the WSI memory relate directly to the testability, reconfigurability 

and performance of the WSI memory. The remainder of this chapter will examine the basic 

technology involved in testability, reconfigurability, power requirements and performance and how 

the architecture and redundancy impact these features. 

42 Testability 

Testability refers to the ease and efficiency of testing the WSI memory. The architecture of 

the memory determines the amount of test time required to fully test the product. Conventional 

semiconductor memoiy products are generally tested by algorithms which utilize tests of order 

0{N^\ 0(N^), or 0(A^).'"' Testing which requires have been proposed by Inoue 

et al.'^'l but it requires sophisticated hardware in each memory module to test the words in parallel. 

The test times for various module sizes are shown in Table 27. Tests which require 0{N^) or 
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0(N^) patterns become unreasonable even for small module sizes. Test time costs were 

estimated by Tus^nski'^^ to be four dollars per minute. Table 28 shows testing costs as a function 

of module size. 

TABLE 27. Test times for memory module testing 

Module 

SizeOO 

All times in milliseconds 
Module 

SizeOO Ofl/2) om Of3/2) om 
1 03 102 327.7 10485.8 
4 0.6 41.0 2621.4 1677722 

16 13 163.8 209713 2684354.5 
64 2.6 655.4 167772.2 42949672.0 

256 5.1 2621.4 13421772 687194752.0 
1024 102 10485.8 10737418.0 1099511603Z0 
4096 20.5 41943.0 85899344.0 175921856512.0 

16384 41.0 1677722 687194752.0 2814749704192.0 
65536 81.9 671088.6 5497558016.0 45035995267072.0 

262144 163.8 2684354.5 43980464128.0 720575924273152.0 
1048576 327.7 10737418.0 351843713024.0 11529214788370432.0 
4194304 655.4 42949672.0 2814749704192.0 184467436613926910.0 

TABLE 28. Test costs of memory module testing 

Module 

Size(K) 

All costs in dollars Module 

Size(K) 0(1/2) 0(1) 0(3/2) 0(2) 
1 0.000 0.001 0.022 0.699 
4 0.000 0.003 0.175 11.185 

16 0.000 0.011 1398 178.957 
64 0.000 0.044 11.185 2863312 

256 0.000 0.175 89.478 45812.984 
1024 0.001 0.699 715.828 733007.750 
4096 0.001 2.796 5726.623 11728124.000 

16384 0.003 11.185 45812.984 187649984.000 
65536 0.005 44.739 366503.875 3002399744.000 

262144 0.011 178.957 2932031.000 48038395904.000 
1048576 0.022 715.828 23456248.000 768614334464.000 
4194304 0.044 2863312 187649984.000 12297829351424.000 

MR memory testing can be conducted with tests of length 0 ( N ) .  This is because MR 

memory elements do not exhibit the coupling faults, also called pattern sensitive faults(PSFs) which 

occur in semiconductor RAM. By testing MR memory cells in parallel, test time and cost can be 
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further reduced. The following calculations estimate test time for a two gigabit wafer with a data 

bus of 64 bits. 

Capacity = N = 2G6 (= 2 x 1(f) 
Bus Width = Mbits 
Read Cycles = Write Cycles = 2N 
Read Cycle Time = lusec 
Write Q/cle Time = 02usec 

Test Time = x Write Cycle Time + x Read Cycle Time 
Bus Width Bus Width 

TestTime = x (0.2 x lO") + x (1.0 x itf») 

Test Time = 15 seconds 

Test Cost = -, 75seconds ^ 4,00dollars /minute — 55.00 
oOseconds /minute 

These calculations demonstrate that testing can occur in a reasonable amount of time and at a 

reasonable cost. Some incremental time would be required to reconfigure the memory to spare out 

defective bits. The number of bits to be spared is approximately 2X 10^ which implies that 0.25 

seconds is required for writing and verifying the spare addresses. An additional second would be 

required to verify that all spares are defect free. 

43 Reconfigurability 

Reconfigurability is the capacity for reconfiguring the memory to spare out defective sectors. 

The hardware for allowing reconfiguration can be either programmable cells, laser fuses or 

polysilicon fuses. All three hardware implementations store the address of the defective bit, row or 

column. A compare circuit continuously compares the defect address against the address on the bus. 

When a match occurs, the defective element is disabled and the spare element is enabled for the 
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memory operation. Programmable cells are either loaded from the system after power-up or read 

internally stored addresses on power up. The stored addresses were written during the original 

configuration. Laser and polysilicon fusing utilize fuses to pull down the input line to a pre­

determined state(0). Blowing the fuse disconnects the line from the ori^al pull-down and the input 

line is pulled-up to assume the alternate state(l). Laser fusing utilizes a laser to blow fuses while 

polysilicon fuses are blown electronically by high currents. 

The wafer scale MR memory will utilize programmable cells for the follomng reasons, 

1. Programmable cells require very small areas compared to laser fuses. 

2. Programmable cells utiliâng triple redundancy bits have a low failure rate of 10^^ or less. 

Laser and polysilicon fuses have substantially higher fmlure rates. 

3. Programmable cells do not cause physical damage on the silicon when they are programmed. 

Laser and polysilicon fuses require significant heat and may cause surface damage. 

4. Programmable cells can be written and verified quickly. Laser fuses require long cycle times 

for locating and blowing the fuse. 

5. Programmable cells can be reconfigured at a later time. Laser fuses can only be programmed 

in a factory environment. Fuses are not reconfigurable after they have been blown. 

6. MR memory technology easily supports programmable cells. Laser and polysilicon fuses 

require additional mask steps for constructing the fuse structures. 

4.4 Power Requirements 

Power requirements and the implied heat dissipation are important considerations in wafer 

scale projects. MR memory requires less power than dynamic RAM or static RAM because MR 

memory cells are non-volatile. MR memory cells only require current when they are actively being 
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written or read. The address flip-flops and address comparators require small amounts of current 

constantly. The power requirements for the MR wafer scale memory are estimated below. 

Current requirements for each active 1 Mb module: 

IS mA Word Current 

8 mA Sense Current ( 8 lines @ 1 mA ) 

10 mA AmpliGers and Support Circuitry 

33 mA Total 

X 8 1 Mb Modules Active simultaneously 

264 mA Current for Active Modules 

03 mA Flip-flops and Comparators for all 1 Mb Modules 

X 2048 Total number of 1 Mb Modules 

1024 mA Current demand for address comparing 

Total Wafer demand = Active Modules + Address Compare Current 

Total Wafer Current = 1.288 Amperes 

Total Wafer Power = 6.44 Watts 

The MR memory wafer's current requirement of 13 Amperes and power requirement of 6J 

Watts are very low for a wafer scale product. In comparison, Anamartic's 20 megabyte wafer 

requires 8 Amperes or 42 Watts.'"' 
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4.5 Performance 

The performance of the MR memory can be expressed in terms of access time and transfer 

rate. Chapter 3 established the 1993 requirements of the MR memory as 1-10 microsecond access 

time and 40-100 megabit per second transfer rate. Access time depends on the cycle time of the MR 

memory cell. Transfer time depends on the cycle time of the MR memory cell and the number of 

cells being accessed in parallel. 

The performance goals of the MR memory can be achieved by designing cells which have a 

one microsecond cycle time and by accessing 64 bits in parallel. This prowdes a one microsecond 

access time and a 64 megabit per second transfer rate. The one microsecond access time can be 

achieved using new MR material which demonstrates a four percent MR effect and by utilising the 

reverse read process which yields a non-destructive read signal which is six times greater than the 

non destructive read signal from the forward read process. The method for accessing 64 bits in 

parallel is discussed in the next section. 

4.6 Architecture and Redundancy 

Determining the optimal redundancy for a WSI memory is a complex problem. There are 

several types of redundancy and many different architectural levels where the redundancy could be 

implemented. Defects in semiconductors exhibit random distributions with a degree of clustering. 

Clustering is the tendency for multiple defects to be found in groups at random locations. For wafer 

scale integration, multiple levels of redundancy are required to compensate for both the random 

distribution and the clustering phenomena. 

Redundancy at any level reduces the capacity of the product. When redundancy occurs at any 

level, there is an areal cost associated with it. When redundancy occurs at low levels, the actual 



www.manaraa.com

39 

redundang may require minimal area. However, when this area is multiplied by the number of 

iinits on the entire wafer, the areal cost may become significant. The impact of redundancy on two 

architectures is examined below. The two architectures are the binary tree structure and the bus 

structure. 

The binary tree architecture implies that 2 units at level n-1 combine to form a unit at level n. 

The usable area at any level with redundancy is on 67 percent of the area available without 

redundancy. The amount of usable area out of the total wafer area then is (2/3)"' where m is the 

number of binary levels with redundancy. Table 29 examines the percent of the wafer usable for 

actual capacity when the architecture is a binary tree. Clearly, a binary tree with redundancy is very 

ineffident. 

TABLE 29. Redundancy costs for binary tree structure 

Number of Levels Percentage of Total Area 
with Redundancy for Memory Capacity 
0 100.00 
1 66.67 
2 44.44 
3 29.63 
4 19.75 
5 13,17 
6 8.78 
7 5.85 
8 3.90 

The architecture at the opposite end of the spectrum from the binary tree would be the bus 

structure. In the bus structure all of the modules on the wafer are hooked to a common bus. 

Through some type of programmable structures, the wafer can select which of the modules 

correspond to which address. When redundancy is performed at a single level, there must be 

sufficient spares to compensate for all possible defect patterns. For MR memory, the defect level is 

expected to be relatively high for the MR elements. Therefore the number of defects per module 

will be quite high and many spares will be required for each module. With the high failure rate of 

the MR elements, single level redundancy is not practical. 
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For wafer scale integration, multiple levels of sparing are required to provide reasonable yield. 

Redundancy at a low level is required to compensate for isolated defects. Redundancy at a higher 

level is reqmred to compensate for clusters of defects. The sparing on the MR wafer scale memory 

will occur at three levels. The low level sparing occurs at the 16Kb level The goal of the low level 

sparing is to compensate for scattered defects. The next level of sparing occurs at the 1MB level 

with the goal of compensating for clustered defects. The third level of sparing is at the system bus 

level The goal of the system level sparing is to compensate for large clusters of defects which 

cannot be handled at the 1 Mb level. Figure 6 shows the sparing for the two lowest levels. 

«•16-» 

1024 
Sense 
Lines 

16 K 
Module 

/ / 
/ / 
/ / 
/ / 
/ / 

/ i 
/ / 
/ / 

/ 
/ 

1 Mb Module (64 x 16K) 

Spare Sense Lines 

Figure 6. Redundancy locations for lowest levels 
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Sparing at the system bus level will occur in the following manner. Every 1Mb module will 

bave a default test address and a programmable address. In test mode, each module is accessed via 

its unique test address. After the wafer has been tested and all functional modules have been 

identified, the programmable addresses of the functional modules will be written to form a 

contiguous memory space. The programmable addressing of the 1 Mb modules has several 

advantages, 

1. Programmable addressing allows the memory capadty to increase when very few modules are 

defective. Traditional spares are not utilized in memory space. 

2. Programmable addressing allows defective modules to occur in any pattern. Traditional 

sparing assigns certain spares to certain regions of the media. Defect patterns which require 

more than the available regional spares cause the sparing to fail even though the number of 

total spares is greater than the total number of defects. 

4.7 Address Decoding 

The programmable address of the 1 Mb module is tWrteen bits long. The top ten bits define 

groups of eight 1 Mb modules. The eight 1 Mb modules in each group access data in parallel. Each 

1 Mb module internally accesses eight bits of data in parallel from a single 16 Kb module. The eight 

bits are placed on the wafer's 64 bit data bus at the byte location determined by the three least 

significant bits of the 1 Mb module's programmable address. The address decoding of the host 

address is shown in Figure 7. 

One consequence of the addressing scheme is that the number of 1 Mb modules which can be 

utilized on the wafer must be a multiple of eight. Accordingly, up to seven of the wafer's functional 
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Figure 7. Address decoding of host address 

1 Mb modules may be unutilized. If higher transfer rates are required, the addressing can be 

modified to access sixteen or 32 modules in parallel and then cycle the data out during the next read 

gde. An alternative solution for higher transfer rates is to use wafers in parallel. This will require 

that the wafers all have the same utilized capacity. 
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5. DESIGN SIMULATION 

5.1 Introduction 

The design simulation uses a computer-based model to estimate the yield and capadty of 

various redundancy combinations for the wafer scale architecture. The computer-based model 

calculates the effects of the redundancy for a range of defect densities and clustering parameters. 

5.2 Overview of Model 

The model vnll calculate the wafer capacity and yield using three yield models, one for each 

level of redundancy. The three yield models are called the 16-Kb model, the 1-Mb model and the 

wafer yield model. The 16-Kb model calculates the yield for the 16-Kb modules using structure, 

redundancy, defect level and clustering level as inputs. The output of the 16-Kb model is used as the 

input of the 1-Mb model along with the amount of redundancy at the 1-Mb level. The 1-Mb model 

calculates the jield of the 1-Mb modules. The wafer level model calculates the capacity and yield of 

the wafer gven the 1-Mb module yield as an input. A block diagram of the simulation is shown in 

Hgure 8. 

1-Mb redundancy 

Defect level, 
Qustering, — 

16-Kb redundancy 

Wafer Yield 
' & Capacity 

1-Mb 
Vield 
Model 

16-Kb 
Yield 
Model 

Wafer 
Yield 
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Figure 8. Block diagram of simulation 
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S3 16-Kb Model 

The 16-Kb model utilizes the negative binomial model which was proposed by Stapper et alJ '̂' 

and is widely used in VLSI memory yield calculations. The negative binomial model calculates ^eld 

based on defect frequency and the degree of clustering. The equation for yield in the negative 

binomial model is 

where \ = defect frequency 
a = clustering parameter 

The negative binomial yield equation can be extended to combine multiple types of defects. 

When the equation is expanded to accommodate multiple types of defects it becomes 

where n = number of types of defects 
X = defect frequency for diefect type n 
a = clustenng parameter for defect type n 

The 16-Kb model uses two types of defects. The first type of defect is called the Sense Line 

Kill (SLK) defect and consists of defects which can render a sense line or a portion of a sense line 

unusable. SLK defects can be spared if a spare sense line is available in the 16-Kb module. The 

second type of defect is the Chip Kill (CK) defect. A CK defect cannot be spared so the 16-Kb 

module is killed or rendered unusable. Chip kill defects are defects which render non-spareable 

portions of the 16-Kb module unusable. Chip kill defects include amplifier drcuit defects, word line 

defects, address decoding defects and defects in other circuitry which is critical for proper 

functioning and which does not have redundant circuits for replacement. 

For modeling, MR elements are assumed to occupy 51 percent of the area while electronics 

(5.1) 

(5.2) 
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occupy the remaining 49 percent. It is also assumed that 50 percent of the defects in the electronics 

result in CK defects while the remainder result in SLK defects. 

For the 16Kb model equation 5-2 can be rewritten as 

~ YsLK (53a) 

where 

•"CK 
YcK = 11 + ~~ I (53b) = f i+M 

I «CAT J 

- ! •  f^SLK) 

If redundancy is added for compensating for SLK defects, equation 53c can be replaced by Harden 

and Strader's equation for circuits with redundancy 

Ysuc = p,) p') (» + 
^SLK •O-SUC 

(5.4) 
^CtSLK 

where 

N-M = number of redundant sense lines 
M = number of required sense lines. 

which reduces to equation 53c if N=M. For the computer model, olsuc ~ ^CKt which assumes 

that the level of clustering in the CK defects is the same as the level of clustering in the SLK defects. 

The computer model uses the following areal calculations which can be achieved with 0.8 {i/n 

lithography. 

16-IQj area = 0.108 mm ̂  

electronics area = 0.0530mm^ 
CK area = 0.0265mm ̂  
SLK area = 0.0265 mm ̂  

number of MR elements = 16,384 
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^SLK ~ 16,384'D^ + (SUC areayOEL (5J) 

^CK ~ iÇ^ area)'DEL (5.6) 

The range of MR defects which will be simulated is from KT'* to defects per MR 

element. The defect densities for electronic drcuits which will be simulated are from 10 defects per 

cm^ to 0.1 defects per cm^. The range of a to be simulated is from 0.1 to 10. Stapper reports 

ranges for a of 03039 to 2382 in dynamic RAM integrated circuits.'̂ ' Moore recommends that 

fault-tolerant circuit designers consider a defect range of 0.01 to 0.15 defects per mm ̂  since most 

processes run between 0.02 and 0.08 defects per mm^P^^ These values correspond to 1 to IS 

defects per cm^ for design tolerance and 2 to 8 defects per cm^ for current process defect 

densities. 

5.4 1-Mb Model 

The 1-Mb model simulates the combination of 16-Kb modules to form the 1-Mb module. A 

functional 1-Mb module requires at least 64 functional 16-Kb modules. The 1-Mb module will 

typically contain one or more spare 16-Kb modules to allow for the replacement of defective 16-Kb 

modules. The 1-Mb model will utilize the binomial model which has been used by Stapper et al.'̂ ' 

and others to model redundant circuits. The yield of a module without redundancy which uses M 

circuits is 

y = (Y, J" (5.7) 

With R redundant circuits the yield is 

Figure 9 shows the effectiveness of redundancy for a circuit where M=64. 
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Figure 9. Effectiveness of Redundancy for M=64 

5.5 Wafer Yield Model 

The wafer yield model uses the 1-Mb yield and the redundancy information to calculate the 

capacity and yield of the wafer. The redundancy information is important because it determines how 

many 1-Mb modules will fit on the wafer. The redundancy at the 16-Kb and 1-Mb levels has an 

areal cost associated with it which detracts from the total capacity of the wafer. The number of 1-

Mb modules available when no redundancy is used on the wafer is 2224. The presence of 

redundancy will reduce this number. The areal cost for the redundancy at each level is shown in 

Table 30 and 31. The cost is the number of redundant modules divided by the total number of 

modules. In the case of 16-Kb redundancy, the cost is multiplied by a factor of ten to include the 

cost of the additional circuitry to allow for sparing. At the 1-Mb level, this additional circuitry is 



www.manaraa.com

48 

TABLE 30. Areal cost of redundancy at 16-Kb level 

Redundant Areal Cost 
Circuits (in percent) 

0 0.00 
1 0.98 
2 1.95 
3 2.92 
4 3.89 
5 4.86 
6 5.83 
7 6.79 
8 7.75 

TABLE 31. Areal cost of redundancy at 1-Mb level 

Redundant Areal Cost 
Circuits (in percent) 

0 0.00 
1 1.54 
2 3.03 
3 4.48 
4 5.88 
5 7.25 
6 8.57 
7 9.86 
8 11.11 

negUgble. 

For a redundancy of 4 at the 16-Kb level and a redundancy of 2 at the 1-Mb level which 

designated 4_2, the reduction in 1 Mbit modules can be calculated as 

Useable Area = 

where 

cost of redundancy at the \6-Kb level 
AC\m ~ Areal cost of redundancy at the l-Mb level 

For 4_2, 

0.0389 
AC 1M=0.0303 

Useable Area = (1-0.0389)-(1-0.0303) = 0.932 
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Number of \-Mb Modules — (0.932) • (2224) = 2072 

The percentage of useable area and the number of 1-Mb modules can be calculated for all 

redundancy combinations. Tables 32 and 33 show this for a range of redundancy combinations. 

TABLE 32. Percent of Usable Area at Wafer level 

16K Redundancy 
1-Mb Redundancy 0 1 2 3 4 5 6 7 8 

0 1.000 0.990 0.981 0.971 0.961 0.951 0.942 0.932 0.922 

1 0.985 0.975 0.965 0.956 0.946 0.937 0.927 0.918 0.908 
2 0.970 0.960 0.951 0.941 0.932 0.923 0.913 0.904 0.895 
3 0.955 0.946 0.937 0.927 0.918 0.909 0.900 0.890 0.881 
4 0.941 0.932 0.923 0.914 0.905 0.895 0.886 0.877 0.868 
5 0.928 0.918 0.909 0.900 0.891 0.882 0.874 0.865 0.856 
6 0.914 0.905 0.896 0.888 0.879 0.870 0.861 0.852 0.843 
7 0.901 0.893 0.884 0.875 0.866 0.858 0.849 0.840 0.832 
8 0.889 0.880 0.872 0.863 0.854 0.846 0.837 0.829 0.820 

TABLE 33. Number of 1-Mb Modules on Wafer 

16K Redundancy 
1-Mb Redundancy 0 1 2 3 4 5 6 7 8 

0 2224 2202 2180 2159 2137 2115 2094 2073 2051 
1 2189 2168 2147 2125 2104 2083 2062 2041 2020 
2 2156 2135 2114 2093 2072 2051 2030 2010 1989 
3 2124 2103 2083 2062 2041 2021 2000 1980 1959 
4 2093 2072 2052 2032 2011 1991 1971 1951 1930 
5 2062 2042 2022 2002 1982 1962 1942 1922 1902 
6 2033 2013 1993 1973 1954 1934 1914 1895 1875 
7 2004 1985 1965 1946 1926 1907 1887 1868 1849 
8 1976 1957 1938 1919 1899 1880 1861 1842 1823 

Because all the 1-Mb modules have programmable addresses, they can always be programmed 

into a range of addresses to provide the optimal capadty. Normally the highest capadty which can 

be achieved is the optimal capadty. For a set of M modules with yield Y, the probability of N 

modules being usable is 
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this is equation 5.8 modified to accommodate the proper indices. Since the wafer operates with sets 

of eight modules in parallel, the yield equation must be modified to incorporate this fact. The 

probability that the wafer will yield a usable capacity of exactly 8X megabits (which includes 8X, 

8X+1,, 8X+7) is 

2 , y (^" ) ( l . yy  for 8Y:sM^8Y+7 (5.10) 

0 for WC>M 

yCapstSX -

The probability that M modules will ^eld a product mth 8X or greater megabits of usable capacity is 

00 
YcapSiSX = 2 ̂ CapB8X (511) 

i = X  

A distribution of capacities can be determined for a given set of defect densities, a and 

redundancy. The mean and standard deviation can be easily calculated because the wafer yield 

model is a binomial distribution. 

Mean = p, = NY 

Standard Deviation — (t — ^NY{\-Y) 

The mean of the distribution is an important figure of merit because it determines the average 

capadty for the wafer for the specified parameters. The standard deviation is also important since it 

indicates the uniformity of the yield of the wafers. When the capacity distribution is evaluated over 

the entire range of defect densities and alpha, the effectiveness of the redundancy can be estimated. 

The effectiveness of the redundancy can be determined by multiplying a 2D distribution of the 

manufacturing process times the 2D distribution of the capacity. Several hypothetical process 

distributions will be considered in Chapter Six. 
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6. SIMULATION RESULTS 

6.1 Introduction 

The émulation results are difficult to evaluate in the raw data form. The following sections 

will describe how to interpret the data and will discuss limitations of the model. 

62 Limitations and Approximations 

The most serious limitation in the yield simulation is the floating point accuracy of the 

computer. The computer used for the simulation was an HP 375 workstation with a 68030 processor 

and a 68882 floating point co-processor. The C programming language and the 68882 limit the 

simulation to 16 significant decimal digits. This limitation becomes serious when trying to calculate 

16-Kb yields for five or more spares. The equation for 16-Kb ^eld (Eq 5.8) results in an alternating 

series where the combinational multipliers exceed Ix 10^^. The resulting yield, which should be 

between zero and one, is inaccurate due to floating point errors. This is because floating point 

subtraction of nearly equal quantities can very greatly increase relative error.'̂ ' Several software 

solutions were investigated but the fundamental problem of limited significant digits remained 

because of no method of calculating (l+x)"' could be implemented for the ranges of x and a. 

An approximation for the 16-Kb yield can be made for five to eight spares if the series uses a 

lower module value. Using a value of 64 instead of 1024 resulted in a very accurate approximation. 

Values for 16-Kb yield calculated using 64 modules were within one percent of the 16-Kb yield using 

1024 modules for zero to four spares. The values were compared over the ranges of 

(10^:210^^) and (O.l^a^lO) which can be achieved in the manufacturing process. The 

software program which compares the calculated values can be found in Appendix A along with the 

corresponding results. 
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63 Interpreting the Results 

The results of the simulation are difficult to interpret in the raw form. The data can be 

comprehended more readily if a simplification is made and the data are presented in a graphical 

format. 

An important simplification occurs by neglecting the electronic circuit defect density. Table 34 

shows the effects of the defect densities and a as they are varied by a factor of 10. The effects of 

the MR defect density and a are very large relative to the effects of electronic circuit defect density. 

Since Xft. had such a minor impact on yield, all subsequent simulations used the worst case \el of 

10 defects per cm This simplification decreased simulation time and complenty. 

TABLE 34. Yields vs. Parameters 

MR element Electronic Yield of Yield Impact 
Alpha defect rate defect density 16-Kb Modules fin percent) 

Spares=0 
0.1 0.00010000 0.100 0.7495 0.00 
0.1 0.00010000 0.010 0.7514 0.25 
0.1 0.00001000 0.100 0.9043 20.65 
1.0 0.00010000 0.100 03776 49.62 

Spares=5 
0.1 0.00010000 0.100 0.9147 0.00 
0.1 0.00010000 0.010 0.9169 0.24 
0.1 0.00001000 0.100 0.9951 8.79 
1.0 0.00010000 0.100 0.9447 3.28 

By neglecting Xgi, the data can be displayed graphically for the various redundancy 

combinations on a two dimensional graph. The horizontal axis of the graph corresponds to a while 

the vertical axis corresponds to X-mr. The ranges of a and cover the expected manufacturing 

process ranges. 

The effectiveness of the redundancy can be determined if the characteristics of the 

manufacturing process can be estimated. In such a case, the product of a 2D distribution of the 

process multiplied by the 2D distributions of capacity mean will determine the yield with redundancy. 
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Figure 10. Manufacturing Process Range and Distributions 

Figure 10 shows a graph of the manufacturing process range. This range can be divided into 

four quadrants. The characteristics of the quadrants are listed below. 

Upper-Left Quadrant - .Relatively dirty process with a high level of clustering. 

Upper-Right Quadrant - Relatively dirty process with a low level of clustering. 

Lower-Left Quadrant - Relatively clean process with a high level of clustering. 

Lower-Right Quadrant - Relatively clean process with a low level of clustering. 
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Figure 10 also shows the distributions which will be used to evaluate the simulation results. 

The circles indicate intervals of one standard deviation from the center of the circle. The yields 

which occur vnth these distributions are listed below. 

Mean yield - The ^eld if the manufacturing process is distributed evenly over the ranges of 

and a. 

Centered yield - The yield if the manufacturing process is normally distributed over the process 

range, with the distribution centered in the middle of the range and standard deviations of 8^ = 0.5 

andÔx =  5x l ( r^  

Lower kit-centered yield - The yield if the manufacturing process is normally distributed over the 

lower left quadrant of the process range, with the distribution centered in the middle of the quadrant 

and standard deviations of = 0.5 and 8\ = 5X 10"^. 

Lower-right-centered-yleld - The yield if the manufacturing process is normally distributed over the 

lower right quadrant of the process range, with the distribution centered in the middle of the 

quadrant and standard deviations of 8^ = 0.5 and 8\ = 5X 10"^. 

Upper-Ielt-centered-yleld - The yield if the manufacturing process is normally distributed over the 

upper left quadrant of the process range, with the distribution centered in the middle of the quadrant 

and standard deviations of Sg = 0.5 and 8\ = 5x IQr®. 

Upper-rlght-centcrad-yleld - The yield if the manufacturing process is normally distributed over the 

upper right quadrant of the process range, with the distribution centered in the middle of the 

quadrant and standard deviations of 8g = 0.5 and 8\ = 5x 10^®, 

The simulation utilizes increments of 0.1a and lO^^XjWR over the ranges of 

10"'*) and (O.l^a^ 10). This results in a matrix of 100 by 100 (or 10,000) calculated 

values. The mean yield is calculated by multiplying the yield of each matrix point by ^QQQQ ' 
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remaining yields utilize a normal distribution and calculate the yield by multipl^g the matrix of 

yield values by a statistical distribution matrix. The statistical distribution matrix can be thought of 

as a 100 X 100 matrix although only a range of the values, a 39 x 39 matrix, are non-zero. In the 

program, the statistical distribution matrix is modeled using a vector. The vector has 39 elements 

which contain the percentage of the normal distribution centered at the point ±0.18. Figure 11 

shows the normal distribution divided into a series of discrete values. Table 35 lists the discrete 

values. 

0.08-

0.06 — 

0.04-

0.02-

0 - —rfff 

Figure 11. Normal Distribution Used in Simulation 

6.4 Numerical Results 

Tables 36 and 37 list the numerical results of the simulation for the level one and level two 

redundancies of zero through eight. The software program which simulates the yield models and 

calculates the yields for the distributions is listed in Appendix B. The data from the simulation are 

displayed graphically in Appendix C. 
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TABLE 35. Values of Normal Distribution 

Offset from center Amount of Normal Distribution 
of Distribution in Matrix Element 

-20 0.0000 
-19 0.0001 
-18 0.0001 
-17 0.0003 
•16 0.0005 
-15 0.0009 
-14 0.0016 
-13 0.0027 
-12 0.0045 
-11 0.0072 
-10 0.0108 
-9 0.0159 
-8 0.0222 
-7 0.0300 
-6 0.0389 
-5 0.0484 
-4 0.0579 
-3 0.0665 
-2 0.0736 
-1 0.0781 
0 0.0796 
1 0.0781 
2 0.0736 
3 0.0665 
4 0.0579 
5 0.0484 
6 0.0389 
7 0.0300 
8 0.0222 
9 0.0159 

10 0.0108 
11 0.0072 
12 0.0045 
13 0.0027 
14 0.0016 
15 0.0009 
16 0.0005 
17 0.0003 
18 0.0001 
19 0.0001 
20 0.0000 
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TABLE 36. Numerical Results of the Simulation 

Redund. Mean Centered LL Cent. LR Cent. UL Cent. UR Cent, 
LULZ Modules Capacity Capacity Capacity Capacity Capacity Capacity 

o_o 2224 1.06 0.00 0.00 0,00 0.00 0.00 
0.1 2189 3.09 0.00 0,00 0,00 0.00 0.00 
0_2 2156 5.46 0.00 0,00 0,00 0.00 0.00 
0_3 2124 7.85 0.00 0,00 0.00 0.00 0.00 
0_4 2093 10.18 0.00 0,01 0.01 0.00 0.00 
0.5 2062 12.43 0.00 0,03 0.03 0.00 0.00 
0.6 2033 14.60 0.00 0,07 0.06 0.00 0.00 
0_7 2004 16.72 0.00 0,15 0.12 0.00 0.00 
0_8 1976 18.75 0.00 0.29 023 0.00 0.00 
1_0 2202 19.70 0.00 3.03 437 0.00 0.00 
1_1 2168 34.12 0.00 14.17 19.06 0,00 0.00 
1_2 2135 44.69 0.01 34,91 44.53 0,00 0.00 
IJi 2103 5329 0.06 63,75 77.52 0.00 0.00 
1_4 2072 60.70 032 96.66 112.96 0.00 0.00 

2042 6736 1.06 12932 146.05 0.00 0.00 
1_6 2013 73 JO 2.65 158.43 173.76 0.00 0.00 
1_7 1985 78.82 5.44 181.95 194.85 0.00 0.00 
1_8 1957 83.78 9,96 199.48 20956 0.00 0.00 
2_0 2180 52.91 432 82.76 10928 0.00 0.00 
2_1 2147 8269 21.14 16927 198.63 0,01 0.07 
2_2 2114 10134 5233 221.00 239.70 0,22 0.90 
2J 2083 115.70 93.11 243.56 252.60 139 3.67 
2_4 2052 127.53 135.03 25033 253.98 4,41 935 
2_5 2022 137.69 171,13 25037 251.62 10,20 19.56 
2_6 1993 146.85 197.96 24821 248.78 19.61 3434 
2_7 1965 154.79 215.45 244.89 244.99 33,09 53.56 
2.8 1938 162.19 22534 241.95 242.00 50,44 76.01 
3_0 2159 93.78 77.10 182.13 202.94 321 11.13 
3-1 2125 13932 166.42 247.57 255.67 1737 4437 
3_2 2093 165.45 220.94 25836 260.18 45.69 94.04 
3_3 2062 184.08 243.49 256.81 256.99 84.85 145.53 
3_4 2032 198.27 24938 253.00 253.00 126.99 186.85 
3.5 2002 20935 248.67 250.00 250.00 164.43 213.85 
3_6 1973 217.02 245.85 246.00 246.00 192.88 228.43 
3_7 1946 222.59 242.94 243.00 243.00 211.76 234.69 
3_8 1919 22537 239.00 239.00 239.00 222.46 235.94 
4_0 2137 137.77 171.55 215.05 221.64 41.45 89.96 
4_1 2104 194,91 242.29 257.04 258.54 113.02 182.14 
4_2 2072 219.82 25532 257.96 258.00 177.18 230.45 
4J 2041 232.27 254.10 254.99 255.00 217.00 246.59 
4.4 2011 237.75 250.99 251.00 251.00 235.63 248.90 
4_5 1982 23930 247.00 247.00 247.00 241.68 246.81 
4_6 1954 23931 244.00 244.00 244.00 241.87 243,93 
4.7 1926 23736 240.00 240.00 240.00 239.63 240.00 
4_8 1899 235.43 237.00 237.00 237.00 236.87 237.00 
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TABLE 37. Numerical Results of the Simulation 

Redund. Mean Centered LL Cent. LR Cent. UL Cent. UR Cent. 
LLL2 Modules Capadty Capadty Capadty Capadty Capadty Capadty 

5_0 2115 174.11 209.17 220.67 222.22 113.73 172.51 
5_1 2083 228.11 253.69 255.93 256.00 203.24 241.41 
5J2. 2051 241.94 25530 255.99 256.00 239.44 253.18 
53 2021 244.81 252.00 252.00 252.00 248.12 251.92 
5_4 1991 244.09 248.00 248.00 248.00 247.48 248.00 
53 1962 242.73 245.00 245.00 245.00 244.81 245.00 
5_6 1934 239.79 241.00 241.00 241.00 240.99 241.00 
5_7 1907 23734 238.00 238.00 238.00 238.00 238.00 
5_8 1880 233.69 234.00 234.00 234.00 234.00 234.00 
6.0 2094 194.49 217.48 219.88 220.00 169.71 206.47 
6.1 2062 24039 25337 253.99 254.00 237.94 251.02 
63 2030 246.68 253.00 253.00 253.00 250.21 252.94 
63 2000 245.84 249.00 249.00 249.00 248.89 249.00 
6_4 1971 244.29 246.00 246.00 246.00 245.98 246.00 
63 1942 241.14 242.00 242.00 242.00 242.00 242.00 
6_6 1914 238.55 239.00 239.00 239.00 239.00 239.00 
6_7 1887 234.81 235.00 235.00 235.00 235.00 235.00 
6_8 1861 231.91 232.00 232.00 232.00 232.00 232.00 
7_0 2073 203.52 217.63 217.99 21821 197.45 214.81 
7_1 2041 243.51 251.00 251.00 251.00 246.45 250.80 
73 2010 247.22 251.00 251.00 251.00 249.84 250.69 
73 1980 245.28 247.00 247.00 247.00 246.99 247.00 
7_4 1951 242.18 243.00 243.00 243.00 243.00 243.00 
73 1922 239.60 240.00 240.00 240.00 240.00 240.00 
7_6 1895 235A4 236.00 236.00 236.00 236.00 236.00 
7_7 1868 232.93 233.00 233.00 233.00 233.00 233.00 
7_8 1842 229.97 230.00 230.00 230.00 230.00 230.00 
8_0 2051 206.71 215.56 215.79 215.73 207.91 21533 
8.1 2020 243.88 248.66 248.72 248.70 247.13 248.63 
83 1989 245.83 248.00 248.00 248.00 247.95 248.00 
83 1959 243.03 244.00 244.00 244.00 244.00 244.00 
8_4 1930 240.55 241.00 241.00 241.00 241.00 241.00 
83 1902 236.82 237.00 237.00 237.00 237.00 237.00 
8_6 1875 233.92 234.00 234.00 234.00 234.00 234.00 
8.7 1849 230.97 231.00 231.00 231.00 231.00 231.00 
8_8 1823 226.99 227.00 227.00 227.00 227.00 227.00 
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6,5 Optimizing Redundancy 

Determining the optimal redundancy depends on where the manufacturing process is expected 

to be centered. Table 38 shows the top ten yields for each distribution. 

TABLE 38. Top Ten Yields for Distributions 

Mean Centered LL Centered 
Capacity R1_R2 Capacity R1_R2 Capacity R1_R2 
24722 7.2 25532 4.2 25836 3.2 
246.68 6.2 25530 5_2 257.96 4.2 
245.84 6Ji 254.10 4_3 257.04 4.1 
245.83 8_2 253.69 5.1 256.81 33 
245.28 73 25337 6.1 255.99 53 
244.81 5_3 253.00 6_2 255,93 5.1 
244.29 6_4 252.00 53 254.99 43 
244.09 5_4 251.00 7_1 253.99 6.1 
243.88 8_1 251.00 7.2 253.00 6.2 
24331 7_1 251.00 4 4 253.00 3 4 

LR Centered UL Centered UR Centered 
Capadty R1_R2 Capadty R1_R2 Capadty R1_R2 
260.18 3.2 25021 6_2 253.18 5.2 
258.54 4_1 249.84 7JZ 252.94 6.2 
258.00 4.2 248.89 63 251.92 53 
256.99 3.3 248.12 53 251.02 6.1 
256.00 5.2 247.95 83 250.80 7.1 
256.00 5.1 247.48 5.4 250.69 7.2 
255.67 3.1 247.13 8.1 249.00 63 
255.00 4.3 246.99 73 248.90 4.4 
254.00 6.1 246.45 7.1 248.63 8.1 
253.98 2.4 245.98 6.4 248.00 83 

248.00 5.4 

The distributions in the lower quadrants, LLt_centered and LR_centered, demonstrate the highest 

capacities. This is because the lower defect densities in the lower quadrants require less redundancy 

to compensate for defects. This means more 1 Mbit modules can fit on the wafer and the total 

capacity can be higher. The mean yield distribution demonstrates the lowest capacities because it is 

the only distribution which is impacted by the high defect densities which lie along the upper edges 

of the upper quadrants. The mean yield distribution and the upper quadrant distributions, 

UL_centered and UR_centered, require higher levels of redundancy to compensate for the higher 
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defect density. The overall wafer yield for these distributions is slightly lower due to fewer 1 Mbit 

modules being available because of the higher redundancy. 

Figure 12 shows the statistical distribution capacities and the mean capacities for the 

redundancy combinations with the top ten mean capacities. The best general redundancy 

combination is the 6_2 combination. This combination has six redundant sense lines in the 16 Kbit 

module and two redundant 16 Kbit modules per 1 Mbit module. The 6_2 combination has the 

second highest mean capacity and is the only combination which yields capacities of 250 MBytes or 

greater for all the statistical distributions. 

An important consideration in determining which combination is optimal is where future 

manufacturing process parameters W1 be located. Stapper states that X. and a decrease 

exponentially with time'̂ '. This means the center of the manufacturing process will move down and 

to the left over time. Combination 6_2 has the highest LL.centered capacity of any of the top ten 

mean distribution combinations. 

The capacity distribution of the 6_2 redundancy product is shown in Figure 13 for the centered 

distribution. This capacity distribution is calculated using the probability function for the binomial 

distribution. 

Figure 13 displays the capacity by megabytes. Figure 14 shows the capacity distribution as the 

number of functional modules. Mgures IS and 16 show capacity versus yield for the centered 6_2 

combination. The yield stays at one for all capadties below the probable capacities. 

6.6 Characteristics of the Optimized Design 
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Figure 12. Distribution of Top Ten Mean Distribution Combinations 
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Figure 13. Capacity Probability 
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Figure 14. Number of Functional Modules Probability 

Table 39 estimates the factory cost and end-user costs for the wafer scale product. Note that 

the factory cost is adjusted to compensate for gross yield losses which are about ten percent. Gross 

l^eld losses are due to processing errors and typically cause a large portion of the wafer to be 

unusable. The attributes of the wafer scale product are summarized in Table 40. The attributes of 

the wafer scale product are shown in Figure 17 along with the projected DRAM and winchester hard 
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disk attributes for 1993. 
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Figure 15. Yield of Capacities (Number of Functional Modules) 
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Figure 16. Yield of Capacities over 200 MB 
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TABLE 39. Estimated Product Costs 

Item Cost (dollars) 
Processed Wafer 550 

Support Electronics 50 
Wafer Packaging 100 

Preliminary Factory Cost 700 
Cost of Gross Yield Loss 75 
Corrected Factory Cost 775 

Cost Multiplier x4 
End-user Cost 3100 

TABLE 40. Wafer Scale Product Attributes 

3100 
250 
12 
1 

64 

End-user Cost ($) 
Capacity (MB) 

Approximate Cost ($/MB) 
Access Time (usee) 

Transfer Rate (Mb/sec) 
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Figure 17. Cost and Access Times of Memory Technologies wth 1993 Additions 
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7. CONCLUSIONS 

The yield simulation has demonstrated that magnetoresistive memory can be effectively 

integrated into a wafer scale product. Effident use of redundancy results in a high capacity product 

with less than 10 percent of the area dedicated to redundancy. The yield simulation indicates there 

are a number of possible redundancy combinations. The 6_2 combination, with six level one spares 

and two level two spares, appears to be the optimal combination for current manufacturing 

processes. 

Wafer scale magnetoresistive memory presents a valuable gap technology product which could 

be utilized to significantly enhance hierarchical memory systems. 

7.1 Future Research 

The implementation of magnetoresistive memory using wafer scale integration can be further 

investigated in the following areas. These areas involve refining the simulation model to incorporate 

more detailed parameters. 

The first area of refinement is to allow X and a to vary over the surface of the wafer. The 

current simulations hold X and a constant for each yield calculation. Analysis of defects in 

semiconductor manufacturing have shown that defects have a higher density at the edge of the wafer 

and a lower density in the middle of the wafer. 

The second area of refinement involves the types of defects. The current model utilizes two 

types of defects which are interpreted as defect densities or faults per unit area. A more refined 

model could utilize ten or more types of defects. For each defect type, the critical area of the circuit 

which can be damaged by the defect type is multiplied by the defect density to determine the yield 

impact of the current defect type. This approach requires detailed circuit layout information and 

information about the defect densities of the manufacturing process. 
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10. APPENDIX A: APPROXIMATION VERIFICATION CODE 
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#include <8tdio.h> 
#include <nath.h> 

double combCint z, int n); 
double cal_16K_yield(int spares, int rows, double MR_defect_rate, 

double El_defect_density, double alpha) ; 
void output_mean(double 1, double yield); 

mainO 
{ 

int spares,n.Rl.RZ,rows; 
double NR_def_rate, EL.def_density, alpha; 
double yield.IK, Modules, yield_64, error, max.error; 

printf(" Ri Maz.errorO); 

for (Rl=l; Rl<=4; Rl+=1) /» upper limit */ 

EL_def.density =0.1; /* defects per sqare mm */ 

max.error = 0.00000; 
MR_def_rate = 0.00002; 
while (MR_def_rate >= 0.000001) 
{ 

alpha = 0.1; 
while (alpha <= 10.0) 

rows = 64; 
yield_64 = cal_16K_yield(Rl, rows, MR_def_rate, EL.def.density, alpha); 
rows = 1024; 
yield_lK = cal_16K_yield(Rl, rows, NR_del_rate, EL.def.density, alpha); 
error = ( yield.64 - yield.lK ) / yield.lK; 

/* print!("%1.4f %1.4f %1.6f", yield.lK, yield.64, error); */ 
if (fabs(error) > fabs(max.error)) 

max.error = error; 
alpha = alpha + 0.10; 

MR.def.rate = MR.def.rate - 0.000001; 

^printf("%3d %4.4fO, Rl, max.error); 

double cal.l6K_yield(int spares, int rows, double NR.defect.rate, 
double El.def ect.dens ity, double alpha) 

int B, M, i; 
double factor; 
double yield.l6K. yield.CK, yield.MR, yield.term, sign; 
double lambda.HR, lambda.CK, CK.area, sense.line.kill.area; 

CK.area = 0.0265; /* mm x mm */ 
sense.line.kill.area = 0.0265; /* mm x mm */ 

lambda.CK = CK.area * El.defect.density; 
lambda.MR = NR.defect.rate • 16384 + sense.line.kill.area • El.defect.density; 

M = rows; 
1 = M + spares; 
yield.MR = 0 ; 
i = 0; 
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while ( i <= spares ) /• sum over i »/ 

sign = pow( -1.0 , spares + i ); 
factor = comb(l,T-i): 
factor = factor * coBb(I-l-i,M-l); 

yield_tem = pow( (l+(l-i) • lambda.MR / ( I • alpha )), -1.0 • alpha ) 
yield_MR = yield.MR + sign » factor * yield.term ; 
i = i + 1; 

} 

yield_CK = pow( 1 + lambda.CK / alpha, -1.0 » alpha ); 

yield_16K = yield_CK » yield.HR; 

return yield_18K; 

> 

/ *  ( x )  x * ( x - l ) * ( x - 2 ) * . . . * ( x - n + l )  * /  

/* ( n ) n*(n-l)*...*2*1 */ 

double comb(int x, int n) 
{ 

int limit ; 
double product; 

product = 1.0; 
limit = X - n + 1; 

while ( X >= limit ) 

if ( X > n ) 
product = product * x; 

else 
n = n - 1; 

X = X - 1; 
> 

while ( n > 1 ) 
{ 

product = product / n; 
n = n - 1; 

> 

return product; 

Results 

R1 MaJ^error 
1 0.0007 
2 0.0008 
3 0.0008 
4 0.0008 



www.manaraa.com

73 

11. APPENDIX B: SIMULATION SOURCE CODE 
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#include <stdio.h> 
#iiiclada <math.h> 

const int 8tat_«idth = 19; 
const double stat_vec[30] = {0.0001.0.0001,0.0003,0.0006.0.0009,0.0016.0.0027,0.0045. 

0.0072,0.0108,0.0169,0.0222,0.0300.0.0389.0.0484.0.0579, 
0.0665,0.0736.0.0781,0.0796,0.0781,0.0736,0.0665,0.0579, 
0.0484,0.0389,0.0300,0.0222,0.0159,0.0108,0.0072,0.0045, 
0.0027,0.0016,0.0009,0.0005,0.0003,0.0001,0.0001}; 

struct stat.data { 
double net.capacity; 
int vert.center; 
int horz.c enter; 

>; 

struct stat.log { 
struct stat.data mean; 
struct stat.data centered; 
struct stat.data LL.centered; 
struct stat.data LR.centered; 
struct stat.data UL.centered; 
struct stat.data UR.centered; 

>! 

double comb(int z, int n); 
double cal.l6K.yield(int spares, double MR.defect.rate, double El.defect.density, double alpha); 
double cal.lM.yield(int spares, double yield.l6K); 
double cal.lM.modules(int Rl, int R2); 
void output .row (double «yield) ; 
struct stat.log initialize.statistic8(void): 
struct stat.log update.statisticsdnt row, double «yield, struct stat.log stats); 

mainO 
{ 

struct stat.log statistics; 
int spares,n,Rl,R2,rou,column; 
double MR.del.rate, EL.def.density, alpha; 
double yield_16K, Modules, yield.lM; 
double yield.row[100]; 

alpha = 0.0; 
lor (n=0; n<=38; n+=l) 

alpha = alpha + stat.vecCn]; 

printf("stat sum = XI.510, alpha); 
printlC'Rl R2 Modules Mean Centered LL.Centered LR.Centered UL.Centered UR.CenteredO) 

lor (R1=0; Rl<=8; Rl+=1) /* upper limit •/ 

lor (R2=8; R2<=8; R2+=l) /• upper limit */ 

statistics = initi:Llize_statistics() ; 
Modules = cal_lM.modules( Rl, R2); 
EL.del.density = 0.1; /* delects per sqare mm */ 

MR.del.rate = 0.0001; 
row = 99; 
while (MR.del.rate >= 0.000001) 
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alpha = 0.1; 
colnma = 0; 
vhile (alpha <= 10.0) 

yield_16K = cal_18K_yield(Rl, MR_daf_rat«, EL_def.density, alpha); 
yield_lM = cal_lM.yield(R2, yield.lOK); 

/• printi("Xl.4f %1.4f Xl.4f0, yield_16K, yield.lM, Modules); */ 
yield_roH[column] = floor(Modules * yield_lM/8.0); 
alpha = alpha + 0.10; 
column +- 1; 

> 
/» output_row(&yield_rog[0]); */ 

statistics = update_statistics(roe, ftyield_roH[0], statistics); 
MR_del_rate = MR_def_rate - 0.000001; 
roe -= 1; 

} 
printf("%2d %2d %4.4f Rl, R2, Modules); 
printf("%3.4f %3.4f statistics.mean.net.capacity, statistics.centered.net.capacity); 
printf("%3.4f %3.4f %3.4f %3.4fO, statistics.LL_centered.net_capacity, 

statistics.LR_centered.net_capacity, statistics.UL.centered.net_capacity, 
statistics.UR_cantered.net_capacity); 

} 
} 

double cal_18K_yield(int spares, double MR_defect.rate, double El_defect_density, double alpha) 

int I, M, i; 
double factor; 
double yield_16K, yield.CK, yield.NR, yield_term, sign; 
double lambda_MR, lambda.CK, CK.area, sense.line.kill.area; 

CK.area = 0.0266; /* mm % mm */ 
s ens e_line_kill_ar ea = 0.0265; /* mm % mm */ 

lambda_CK = CK.area * El.defect.density; 
lambda.MR = MR_defect_rate * 16384 + sense_line_kill_area * El.defect.density; 

M = 64; 
I = M + spares; 
yield_MR = 0 ; 
i = 0; 

Bhile ( i <= spares ) /* sum over i */ 

sign = pow( -1.0 , spares + i ); 
factor = comb(l,l-i); 
factor = factor * comb(I-l-i,M-l); 

yield.term = pow( (l+(I-i) * lambda.MR / ( I • edpha )), -1.0 * alpha ); 
yield.MR = yield_NR + sign * factor * yield_term ; 
i = i + 1; 

> 

yield_CK = poH( 1 + lambda.CK / alpha, -1.0 • alpha ); 

yield_16K = yield.CK • yield.MR; 

return yield_16K; 



www.manaraa.com

76 

double cal_lN_yield(int spares, double yield_16K) 

int N,R,n; 
double yield.IN; 

M = 64; 
R = spares; 
yield_lN = 0.0; 
n = 0; 
while ( n <= R ) 

yield_lN = yield_lM + comb(M+R,n) * pow(yield_16K,M+R-n) * pow(l-yield_16K,n) 
n += 1; 
} 

il (yield_lN > 0.99990) 
yield_lM = 0.9999; 

return yield.lM; 

/ »  ( x )  x * ( x - l ) * ( x - 2 ) * . . . * ( x - n + l )  * /  

/* ( n ) n*(n-l)*...*2*1 */ 

double comb(int x, int n) 

int limit ; 
double product; 

product = 1.0; 
limit = X - n + 1; 

while ( X >= limit ) 
{ 

il ( X > n ) 
product = product * x; 

else 
n = n - 1; 

X = X - 1; 
} 

while ( n > 1 ) 
{ 

product = product / n; 
n = n - 1; 

} 

return product ; 

double cal_lM_modules(int RI, int R2) 

double AC_16K, AC.IN, Usable.area, Modules ; 

AC.IH = 1.0 * R2/(64.0 + R2); 

AC_16K = 10.0 * RI/(1024.0 + RI); 

Usable.aroa = ( 1.0 - AC_1M ) * ( 1.0 - AC.16K ); 
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Modules = 11OOT(2224 * Usable.araa); 

return Modules; 

void output_rov(double «yield) 

int mean.i; 
char ch; 

for (i=0; i<=99; i+=l) 

mean = floor(*(yield+i)/10.0); 
ch = 'a' + mean; 
printlCXc", ch); 
>; 

printfC'O); 

} 

struct stat.log update_statistic8(int row, double «yield, struct stat.log stats) 

int i,center_roa,center.col,start.col; 
double horz.mult, vert.mult, capacity; 

for (i=0; i<=99; i+=l) 
stats.mean.net.capacity += 0.0001 * *(yield+i); 
center.rov = stats.centered.vert_center; 
if ((row >= (center.rov - stat.vidth)) kk (row <= (center.ros + stat_width))) 
{ 

vert_mult = stat.vec[stat_width + row - center.ros]; 
center.col = stats.centered.horz.center; 
start.col = center.col - stat.sidth; 

for (i=0; i<=38; i+=l) 
{ 

horz.mult = stat_vec[i]; 
capacity = *(yield + start.col + i); 
stats.centered.net.capacity += vert.mult * horz.mult * capacity; 

>; 
>; 

center.ros = stats.LL.centered.vert.center; 
if ((row >= (center.rov - stat.width)) kk (row <= (center.row + stat.width))) 

vert.mult = stat.vec[stat.width + row - center.row]; 
center.col = stats.LL.centered.horz.center; 
start.col = center.col - stat.width; 

for (i=0; i<=38; i+=l) 
{ 

horz.mult = stat.vec[i]; 
capacity = «(yield + start.col + i); 
stats.LL.centered.net.capacity •*•= vert.mult * horz.mult * capacity; 

>; 
>; 

center.row = stats.LR.centered.vert.center; 
if ((row >= (center.row - stat.width)) kk (row <= (center.row + stat.width))) 
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{ 
vert_mult = 8tat_vec[8tat_vidth + row - center.row]; 
canter.col = stats.LR.centered.horz.center; 
start.col = center.col - stat.vidth; 

for (i=0; i<=38; i+=l) 
{ 

horz_mult = stat_vec[i]; 
capacity = *(yield + start.col + i); 
stats.LR_centered.net_capacity += vert.mult * horz.nult * capacity; 

}; 
>; 

center.roB = stats.UL_centered.vert_center; 
if ((rov >= (center.rov - stat.vidtb)) kk (row <= (center.row + stat.vidth))) 
•C 

vert_Biilt = 8tat_vec [stat.width + row - center.row] ; 
center_col = stats.UL_centered.horz_cemter; 
start_col = center.col - stat.width; 

for (i=0; i<=38; i+=i) 
{ 

horz_miilt = stat.vecCi]; 
capacity = *(yield + start.col + i); 
8tats.UL_centered.net_capacity += vert.mult * horz.mult * capacity; 

>; 

>; 

center_row = stats.UR.centered.vert.center; 
if ((row >= (center.row - stat.width)) kk (row <= (center.row + stat.width))) 

vert.mult = stat.vec[stat.width + row - center.row]; 
center.col = stats.UR.centered.horz.center; 
start.col = center.col - stat.width; 

for (i=0; i<=38; i+=l) 
{ 

horz.mult = stat.vec Ci]; 
capacity = *(yield + start.col + i); 
stats.UR.centered.net.capacity += vert.mult * horz.mult * capacity ; 

>; 
>; 
return stats ; 

> 

struct stat.log initialize_statistics(void) 

struct stat.log statistics; 

statistics.mean.net.capacity = 0.0; 
statistics.centered.net.capacity = 0.0; 
statistics.LL.centered.net^capacity= 0.0; 
statistics.LR.centered.net.capacity= 0.0; 
statistics.UL.centered.net.capacity = 0.0; 
statistics.UR.centered.net.capacity = 0.0; 

statistics.mean.vert.center = 0; 
statistics.centered.vert.center = 60; 
statistics.LL.centered.vert.center - 26; 
statistics.LR.centered.vert.center = 26; 
statistics.UL.centered.vert.center = 76; 
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atatistica.UR.cantered.vart.center = 75 

statistics.mean.horz.center = 0; 
statistics.centered.horz_center = 60; 
stati8tics.LL_centered.horz_center = 25 
statistics.L&_centered.horz_center = 76 
statistics.UL_centered.horz_center = 25 
statistics.UR_centered.horz_center = 76 

return statistics; 
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12. APPENDIX C: GRAPHICAL SIMULATION RESULTS 



www.manaraa.com

81 

50 100 150 200 250 
Mean Capacity (Mbytes) 

Figure 18. Mean Yield Capacities (grouped by level 1 redundancy) 
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Figure 19. Centered Yield Capacities (grouped by level 1 redundancy) 
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Figure 20. LL_Centered Yield Capacities (grouped by level 1 redundancy) 
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Figure 21. LR_Ccntered Yield Capacities (grouped by level 1 redundancy) 
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Figure 22. UL.Centered Yield Capacities (grouped by level 1 redundancy) 
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Figure 23. UR_Centered Yield Capacities (grouped by level 1 redundancy) 
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Figure 24, Mean Yield Capacities (grouped by level 2 redundancy) 
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Figure 25. Centered Yield Capacities (grouped by level 2 redundancy) 
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Figure 26. LL.Centered Yield Capacities (grouped by level 2 redundancy) 
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Figure 27. LR.Centered Yield Capacities (grouped by level 2 redundancy) 
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Figure 28. UL_Centered Yield Capacities (grouped by level 2 redundancy) 
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Figure 29. UR_Centered Yield Capacities (grouped by level 2 redundancy) 
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